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Summary. Roothaan-Hartree-Fock wave functions composed of 12s8p6d, 
12s10p6d, and 12sl0p8d even-tempered (ET) Slater-type functions (STFs), respec- 
tively, are reported for the atoms K-Zn, Ga-Kr, and Rb-Xe in their ground state. 
Despite the limited variational freedom in the ET method, the resultant atomic 
energies are found to compare well with fully-optimized wave functions of similar 
sizes. In particular, the present ET results reproduce almost completely the fully- 
optimized Sekiya-Tatewaki energies with the same basis set size for the atoms 
K-Zn. All the present energies are also lower than the Clementi-Roetti ones with 
slightly smaller but fully-optimized basis sets. A generalized even-tempered scheme 
is suggested and shown to give good results for Xe. 

Key words: Even-tempered wave functions - Slater-type functions - Third- and 
fourth-row atoms 

I Introduction 

Since the introduction of the analytical expansion or Roothaan-Hartree-Fock 
(RHF) method [1] in the Hartree-Fock (HF) theory, many atomic RHF wave 
functions have been generated using either Slater-type functions (STFs) or Gaus- 
sian-type functions (GTFs). Earlier elaborate work using STFs includes the RHF 
wave functions of Clementi [2], Bagus, Gilbert, and Roothaan [3], Huzinaga [4], 
and Raffenetti and Ruedenberg [5, 6]. In the first three of these efforts [2-4], the 
nonlinear parameters (i.e., STF exponents) were independently optimized. How- 
ever, Raffenetti used the even-tempered (ET) representation of Ruedenberg, Raf- 
fenetti, and Bardo [7] jn which the unnormalized radial parts of the STFs are given 
by r ~ exp ( -  ~r) for all basis functions with the angular momentum quantum 
number l, and the exponents ~ for all the STFs corresponding to each I are given by 
a geometric sequence defined by two nonlinear parameters ~ and//. 

The most extensive compilation of fully-optimized RHF wave functions is due 
to Clementi and Roetti [8]. Their RHF wave functions are widely considered to 
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have near HF accuracy. They have been used extensively; for example, their 
work [8] received more than a thousand citations [9] in the first ten years after 
its publication. However, the insufficient accuracy of the Clementi-Roetti 
wave functions, compared to the numerical HF (NHF) results [10], has been 
pointed out often [11-16]. Improved STF-RHF wave functions were reported by 
Tatewaki and Sekiya [12-14] and Bunge et al. [15]. These authors made some 
effort to adopt optimal STF principal quantum numbers {n} in addition to 
optimizing the exponents {~}. The importance of the choice of {n} has been 
demonstrated recently for He-Xe within the single-zeta [17] and double-zeta [18] 
approximations. 

However, the apparent lack of regularities [17, 18] in the optimal {n} makes it 
difficult to extend such an optimized basis set by adding more diffuse or tight basis 
functions that may be required for the description of some property other than the 
energy. On the other hand, there is no ambiguity in extending an ET basis set that 
uses only functions with the lowest value of n; one simply extends the geometric 
sequence of exponents. Thus, it is very useful to find ET basis sets that lead to 
energies comparable to those obtained from fully-optimized basis sets of similar 
size. There is evidence that this is possible. Ruedenberg and coworkers [5, 6, 19-22] 
showed that the HF limit can be achieved by the analytical expansion method 
using systematically large ET functions. The practical utility of the ET method was 
also supported by Huzinaga's [23] and Tatewaki's [24] findings that accurate 
atomic energies are obtained for the first- and second-row atoms by the use of 
a relatively small number of Is and 2p STFs. 

In this paper, we report RHF wave functions for the third- and fourth- 
row atoms in their ground state using even-tempered STF basis set of size 
comparable to fully-optimized ones. In the next section, the compuational method 
is described. In Sect. 3, the details of our wave functions are given. All our 
energies are closer to the NHF values than the famous Clementi-Roetti ones 
which were based upon slightly smaller STF sets. For the atoms K-Zn, the present 
results compare well with the fully-optimized results of Sekiya and Tatewaki [14], 
and Bunge et al. [15] and are satisfactory approximations to the NHF wave 
functions. In Sect. 4, we describe a generalized even-tempered scheme which is 
shown to give favorable results for Xe. Hartree atomic units are used throughout 
this paper. 

2 Computational method 

All the present RHF calculations were performed with a modified and corrected 
version [25] of Pitzer's implementation [26] of the Roothaan-Bagus proce- 
dure [1]. 

In the ET method [5-7, 19-22], the STF exponents {(i} for each symmetry are 
specified by the two parameters c~ and fl through the relationship: 

(i = ~fli, (i = 1, 2 . . . .  , Ml) 

where M~ is the number of basis STFs for the symmetry l ( = s, p, d . . . .  ). Thus only 
six nonlinear parameters are required for the third- and fourth-row atoms except 
for K and Ca which need only four. These nonlinear parameters were variationally 
optimized with Powell's conjugate directions method 1-27]. 
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3 Results and discussion 

The variational optimization of the tempering parameters {e, fl} was performed for 
the atoms K - Z n  with a 12s8p6d STF set, for G a - K r  with a 12sl0p6d STF set, and 
for Rb-Xe with a 12sl0p8d STF set. 

Table 1 presents a comparison of the total energies of our ET wave functions 
with those from fully-optimized wave functions [14, 8, 15] and NHF functions [10, 
15]. We have the following observations about Table 1: 

(i) For the atoms K-Zn,  the present ET energies agree almost completely with 
those of the fully-optimized Sekiya-Tatewaki functions [14], though both calcu- 
lations use exactly the same number of STFs. This implies that the 
Sekiya-Tatewaki functions can be further improved by the reoptimization of 
exponents. The results of Bunge et al. [15] support this statement since they 
obtained the same or better energies with a smaller basis set. 

(ii) All our ET energies are lower than the Clementi-Roetti values [8]. Though we 
used slightly larger basis sets than Clementi and Roetti, this result is surprising 
since the Clementi-Roetti wave functions have been regarded as having near HF 
quality for a long time. The remarkable difference in the number of nonlinear 
parameters should be noted. In Xe, for example, our ET function has only 
6 nonlinear parameters whereas the Clementi-Roetti function has 25. 

(iii) As well as ~-optimization, Bunge et al. [15] made a careful choice of {n} and 
their energies coincide with the NHF values for almost all atoms. Except for the 
third-row atoms, our ET energies are worse than theirs. If we compare the number 
of STFs with Bunge et al. for K-Zn,  where the total energies from the two 
calculations coincide, we see that our ET set contains one extra STF of each 
symmetry. This is in agreement with Feller and Davidson's observation [28] that 
the energy penalty to the ET method is about one STF in the carbon atom. Thus it 
is clear that our ET energies for the fourth-row atoms are worse than those of 
Bunge et al. in the third decimal place, because we used a smaller number of STFs. 
We think the present results are satisfactory given their basis size. However, a few 
more STFs are required to reproduce the NHF energies for the fourth-row atoms 
with the ET method. 

Table 2 lists the values of the tempering parameters c~ and ~. Adequate 
convergence of our optimization of these parameters is supported by the fact that 
the virial ratio did not deviate from its exact value ( - 2) by more than 1 x 10-7 in 
any of the present calculations. We have also verified that these parameters are 
smooth functions of the atomic number Z, except when the electronic configura- 
tions deviate from the simple aufbau pattern. 

A detailed example of the present ET wave functions is given in Table 3 for the 
Fe atom, which occupies the central position of the third row in the periodic table. 
The ET orbital energies do not differ from the corresponding NHF values [10] by 
more than 5 x 10-5 a.u. and the near HF quality of the ET function is seen. The 
same is true for K-Zn.  

4 Generalized even-tempered scheme 

One may wonder whether the present results can be improved within the frame- 
work of the ET method without adding any STFs. We have found a simple 
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Table 2. Parameters of the even-tempered wave functions 
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Z Atom 
s p d 

19 K (zs )  0.323156 1.500168 1.085373 1.412995 
20 Ca (aS) 0.386367 1.481109 1.091284 1.427859 
21 Sc (ZD) 0.433048 1.414489 1.206324 1.420436 0.653988 1.599321 
22 Ti (3F)  0.444283 1.418205 1.319584 1.412493 0.747917 1.580641 
23 V (4F)  0.454140 1.422116 1.424874 1.407294 0.809027 1.577057 
24 Cr (7S) 0.441656 1.432744 1.484347 1.413282 0.690256 1.642520 
25 Mn (6S) 0.471853 1.429669 1.620072 1.401390 0.915593 1.576429 
26 Fe (SD) 0.483640 1.432193 1.705249 1.403325 0.926453 1.591982 
27 Co (4F)  0.494611 1.434749 1.790105 1.404884 0.951912 1.602116 
28 Ni (3F)  0.505546 1.437127 1,873375 1.406744 0.979097 1.611376 
29 Cu ( a s )  0.473332 1.451328 1,816616 1.384481 0.827552 1.688536 
30 Zn (aS) 0.526862 1.441530 1,988673 1.377547 1.041109 1.626022 
31 Ga (2p)  0.626313 1.422503 0.489039 1.503293 1.250979 1.580672 
32 Ge ( ap )  0.718485 1.408212 0.581931 1.478153 1.391589 1.566362 
33 As (4S) 0.809263 1.396284 0.671720 1.458912 1.558204 1.552310 
34 Se (3p)  0.889055 1.387678 0.709062 1.455770 1.752082 1.535982 
35 Br (2p)  0.963935 1.380802 0.764697 1.448794 1.944485 1.524544 
36 Kr (1S) 1.049276 1.373751 0.834230 1.439216 2.127623 1.518821 

37 Rb (2S) 0.340918 1.527497 1.006430 1.412036 0.425759 1.691187 
38 Sr (aS) 0.393940 1.511817 0.934467 1.430821 0.474442 1.672810 
39 Y (2D) 0.422139 1.506049 1.026911 1.419959 0.529066 1.653825 
40 Zr (aF)  0.440533 1.503631 1.100140 1.413366 0.583895 1.636895 
41 Nb (6D) 0.475851 1.496666 1.176644 1.406577 0.643000 1.620231 
42 Mo (7S) 0,489557 1.495912 1.261091 1.399586 0.716652 1.597448 
43 Tc (6S) 0.477542 1.501934 1.322453 1.396620 0.907124 1.514435 
44 Ru (SF) 0.492628 1.500668 1.400252 1.391417 0.822341 1.574196 
45 Rh (4F)  0.490705 1.503923 1.475139 1.387229 0.880908 1.559883 
46 Pd (1S) 1.306916 1.379291 1.513970 1.387684 0.704067 1.534819 
47 Ag ( a s )  0.484166 1.511185 1.634369 1.378923 0.937174 1.487945 
48 Cd (aS) 0.520962 1.504179 1.711569 1.375711 1.154935 1.491807 
49 In (2p)  0.620819 1.484194 0.499604 1.520617 1.309980 1.465562 
50 Sn (3p)  0.699430 1.471779 0.546553 1.508798 1.434752 1.451910 
51 Sb (4S) 0.768925 1.462490 0.590590 1.499171 1.541278 1.444441 
52 Te (3p) 0.833152 1.454979 0.616791 1.495490 1.641393 1.439100 
53 I (2p)  0.893343 1.448702 0.650000 1.490162 1.733196 1.435872 
54 Xe (aS) 0.951017 1.443253 0.686055 1.484517 1.820085 1.433470 

modif icat ion that may  produce nontr iv ia l  improvements  for the fourth-row atoms. 
The idea is to use two even-tempered sequences with different pr incipal  q u a n t u m  
numbers:  l s  and 2s, 2p and  3p, and  3d and 4d STFs for the s, p, and  d symmetries. 
For  example, a set of 1 s type STFs, exp ( - ~r), with the ~ in a geometric sequence 
and  a set of2s  STFs, r exp ( - ('r), with the (' in a different geometric sequence form 
the s-part of the basis set. Thus, the n u m b e r  of non l inear  parameters  is exactly 
twice that  of the original ET method.  A pre l iminary examina t ion  of this scheme 
was made for Xe. Tables 4 and  5 display the convent ional  ET and  generalized ET 
wave funct ions for Xe in a basis set of 12sl0pSd STFs. The error with respect to the 
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Table 3. Even-tempered wave function for the Fe atom 

T. Koga et al. 

IRON K(2)L(8)3S(2)3P(6)4S(2)3D(6), 5D 

E = - 1262.44357760 
T =  1262.44357780 V =  -2524.88715540 
Orbital energies and expansion coefficients 

V / T =  -2.00000000 

s IS 2s 
BASIS/ORB.ENERGY - 261.3733781 - 31.9354695 
IS 0.692666 0.0004055 - 0.0023350 
1S 0.992031 - 0.0022897 0.0134027 
1S 1.420781 0.0068235 - 0.0409618 
IS 2.034832 - 0.0144809 0.0906632 
1S 2.914273 0.0247491 - 0.1636000 
IS 4.173802 - 0.0365136 0.2815595 
1S 5.977692 0.0473860 - 0.4060962 
1S 8.561210 - 0.0551136 2.6444617 
IS 12.261307 0.0599210 - 1.2648598 
1S 17.560561 - 0.0205375 - 0.5321771 
IS 25.150118 0.9430599 - 0.0576182 
1S 36.019829 0.0509094 - 0.0037891 

P 2P 3P 
BASIS/ORB.ENERGY - 27.4136681 - 2.7421626 
2P 2.393018 0.0037274 0.2518936 
2P 3.358182 - 0.0159807 0.7487926 
2P 4.712621 0.0455896 0.2849138 
2P 6.613339 - 0.0501728 - 0.1617175 
2P 9.280664 0.6779521 - 0.4340381 
2P 13.023787 0.3167296 - 0.0265901 
2P 18.276607 0.0421142 - 0.0340968 
2P 25.648019 0.0073560 0.0007164 

D 3D 
BASIS/ORB.ENERGY - 0.6468586 
3D 1.474896 0.1261427 
3D 2.348007 0.3486678 
3D 3.737984 0.3836182 
3D 5.950801 0.2582315 
3D 9.473566 0.0400456 
3D 15.081741 0.0056755 

3S 4s 
-4.1693918 -0.2581549 
-0.0098949 2.1369588 

0.0499342 -1.1774061 
-0.1233153 0.3405459 

0.2011115 -1.0817492 
1.7140601 0.4258904 
0.4614936 -0.4991230 

-2.3067162 0.7587552 
-0.2309296 -0.0556254 

0.7489488 -0.1448601 
0.0504810 - 0.0115755 
0.0471938 -0.0098701 

-0.0027918 0.0005951 

n u m e r i c a l  H F  l imit  is r e d u c e d  f r o m  2.5 to  1.0 mi l l i ha r t r ee s  by  c h a n g i n g  f r o m  the  
c o n v e n t i o n a l  to  the  gene ra l i z ed  E T  scheme .  T h e  use  of  t w o  n's s e e m s  to  r ed u ce  
the  n u m e r i c a l  l inea r  d e p e n d e n c e  r e su l t ing  in a n  i m p r o v e d  a t o m i c  energy .  

5 S u m m a r i z i n g  r e m a r k s  

In  s u m m a r y ,  we  h a v e  r e p o r t e d  a c c u r a t e  E T - R H F  w a v e  f u n c t i o n s  for  the  a t o m s  
K - X e .  A m o n g  the  p r e s e n t  E T  func t ions ,  t h o s e  for  K - Z n  d e s c r i b e d  w i t h  12s8p6d 
S T F  sets  h a v e  qua l i ty  c lose  to  t he  N H F  func t ions .  T h e  s l ight  i nc rease  in size of  an  
E T  bas i s  ove r  a f u l l y - o p t i m i z e d  one  is m o r e  t h a n  c o m p e n s a t e d  by  a m a r k e d  
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Table 4. Conventional even-tempered wave function for the Xe atom 
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XENON K(2)L(8)M(18)4S(2)4P(6)5S(2)4D(10)5P(6), IS 

E = - 7232.13585050 
T = 7232.13585186 V =  - 14464.27170236 V / T =  -2.00000000 
Orbital energies and expansion coefficients 

S 1S 
BASIS/ORB.ENERGY - 1224.3951860 
1S 1.372558 -0.0000885 
IS 1.980949 0.0004885 
1S 2.859011 -0.0014323 
1S 4.126276 0.0030065 
1S 5.955262 -0.0050900 
1S 8.594951 0.0075863 
1S 12.404692 -0.0107848 
1S 17.903112 0.0144935 
1S 25.838726 -0.0204878 
1S 37.291825 0.0624047 
1S 53.821549 0.9363043 
1S 77.678128 0.0159241 

P 2P 
BASIS/ORB.ENERGY - 177.7816670 
2P 1..01846l - 0.0002543 
2P 1.511923 0.0011140 
2P 2.244475 -0.0026621 
2P 3.331961 0.0046520 
2P 4.946353 -0.0069651 
2P 7.342944 0.0090371 
2P 10.900726 -0.0148860 
2P 16.182313 0.0943007 
2P 24.022919 0.8244323 
2P 35.662431 0.1070062 

2S 
-189.3393911 

-0.0115554 
0.0635889 

-0.1846242 
0.3826031 

- 0.6460441 
0.9584605 

- 1.3500553 
3.1921481 

-0.9648946 
-0.9548934 

0.0600756 
- 0.0108407 

3P 
-35.2208344 

- 0.0008474 
0.0040278 

-0.0111322 
0.0244739 

-0.0479906 
0.2300553 
1.5731912 

-0.8584820 
-0.3666768 
- 0.0288847 

3S 
-40.1748522 
-0.0234280 

0.1305101 
-0.3947839 

0.8936627 
-1.7364365 

5.8612449 
-4.5446812 
-1.2195399 

1.4993249 
0.0624855 
0.0243014 

-0.0015572 

4P 
- 6.0074382 

0.0023317 
- 0.0035841 
-0.0120617 

0.4102889 
1.7574325 

-1.5744823 
- 0.5662604 

0.4908815 
0.1417159 
0.0134445 

4S 
-7.8554279 
-0.0212616 

0.1396986 
-0.3973455 

5.3905864 
-5.5846382 
-2.1921480 

4.3651847 
- 0.8097296 
-0.2564800 
-0.1530115 

0.0203013 
-0.0031524 

5P 
-0.4567536 

0.5067037 
0.8239016 

-0.0354575 
-0.6728875 
-0.4144580 

0.5179530 
0.1877832 

-0.1669586 
-0.0395340 
-0.0045536 

D 3D 4D 
BASIS/ORB.ENERGY - 26.1182786 - 2.7770778 
3D 2.609036 0.0010448 0.0907797 
3D 3.739974 - 0.0045696 0.5096281 
3D . 5.361139 0.0098235 0.5935054 
3D 7.685030 0.0527882 - 0.0452980 
3D 11.016256 0.6044724 - 0.3597518 
3D 15.791467 0.3207948 - 0.1125893 
3D 22.636587 0.0628014 - 0.0332165 
3D 32.448858 0.0040749 - 0.0002810 

5S 
- 0.9440251 

3.1079091 
-2.0416369 
-0.8735901 
- L8519813 

3.1790136 
- 0.0014464 
- 1.3039577 

0.1891482 
0.1474907 
0.0308365 

-- 0.0013901 
0.0003493 

r e d u c t i o n  in  t h e  n u m b e r  o f  n o n l i n e a r  p a r a m e t e r s  to  be  o p t i m i z e d  a n d  e a se  o f  

e x t e n s i o n .  W e  h o p e  t he  E T  w a v e  f u n c t i o n s  r e p o r t e d  in  th i s  p a p e r  will be  o f  s o m e  

u s e  in  f u t u r e  a t o m i c  a n d  m o l e c u l a r  s tud ie s .  D e t a i l e d  t a b l e s  o f  t h e s e  w a v e  f u n c t i o n s  

a r e  ava i l ab l e ,  p r e f e r a b l y  v ia  I n t e r n e t  u p o n  r e q u e s t  to  A J I T @ U N B . C A ,  o r  b y  p o s t  

to  T K  o r  A J T .  T h e  g e n e r a l i z e d  E T  will be  e x p l o r e d  fu r t he r .  
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T a b l e  5. Gene ra l i z ed  e v e n - t e m p e r e d  wave  func t ion  for  the  Xe a t o m  

T. K o g a  et al. 

X E N O N  K(~L(8)M(18)4S(2)4P(6)5S(2)4D(10)5P(6) ,  IS 

E = - 7232.13735779 

T =  7232.13737294 V =  - - 1 4 4 6 4 . 2 7 4 7 3 0 7 4  V / T  = - 2 , 0 0 0 0 0 0 0 0  

O r b i t a l  energies  a n d  e x p a n s i o n  coefficients 

S 1S 

B A S I S / O R B . E N E R G Y  - 1224.3972289 

1S 2 .636182 - 0 . 0 0 1 0 4 8 5  

1S 4 .891944 - 0 . 0 0 2 8 0 9 1  

1S 9 .077947 - 0 . 0 1 2 7 1 3 3  

1S 16.845884 - 0 . 0 9 7 7 9 4 4  

1S 31,260792 0 .8190088 

1S 58,010436 0 .5813945 

2S 0 .695142 - 0 . 0 0 0 0 0 0 6  

2S 1.550611 0 .0000107 

2S 3.458851 0 .0009102 

2S 7 .715444 0.0050241 

2S 17.210364 0 .0438690 

2S 38.390093 - 0 .3774166 

P 2 P  

B A S I S / O R B . E N E R G Y  - 177.7821036 

2 P  2.114683 0 .0069415 

2 P  4 .255573 0 .0136328 

2 P  8.563885 0 .0314438 

2 P  17.233901 0 .2462966 

2 P  34.681378 0.4147141 

3 P  1.266148 - 0 .0001907 

3P  2 .775040 - 0 .0070366 

3 P  6 .082103 - 0 .0175935 

3 P  13.330253 - 0 .0494440  

3 P  29 .216150 0.4059361 

D 3 D  

B A S I S / O R B . E N E R G Y  - 26 .1185065 

3D 2.798988 - 0 .0004976 

3 D  6.132540 0 .0156914 

3 D  13.436301 0 .7092478 

3 D  29.438730 0 .0414469 

4 D  2.082013 0 .0001125 

4 D  4.751155 - 0 .0002484 

4 D  10.842140 0 .2332083 

4 D  24.741773 0 .0719452 

2S 3S 4S 

- 189.3396696 - 40 .1753255 - 7 .8557437 

0 .0974930 - 0 .3483920  - 0 .8619892 

0 .0629619 - 0 .1457771 6 .4102194 

0 .1849803 3 .2952954 - 3 .1080046 

2 .7915104 - 2 .0064296 0 .5534352 

- 1.8314808 0 .6147637 - 0 .2565749 

- 0 .0153418 0 .0029879 - 0 .0002676 

0 .0002290 - 0 .0008729 - 0 .0007489 

- 0.0019353 0 .0071189 0 .0109404  

- 0 .0732945 0 .2586757 0 .9316310 

- 0 .1223226 0 ,3264329 - 4 .3014362 

- 0 .7388776 - 1.5672781 0 .7643513 

0 .0631672 - 0 .0185959 0 .0102266 

3 P  4 P  5 P  

- 35 .2213832 - 6 .0077954 - 0 .4570459 

0 .0272005 - 0 .0838584 3 .4171156 

0 .0560894 1.4724400 - 2 .6429294 

0 .6307173 - 1 .5145784 0 .9059817 

- 0 .3939708 0 .4052952 - 0 ,1644379 

- 0 .1650624 0 .0626490 - 0 . 0 1 7 2 4 3 7  

- 0 .0007631 0.0026851 0 .5423893 

- 0 .0275603 0 .1017780 - 2 .1483695 

- 0 .0700765 0 .1663494 0 .8053417 

0 .6795408 0.0114631 - 0 .0566308 

- 0 .1837928 0 .0658678 - 0 .0162473 

4 D  

- 2 .7773615 

0 .1747423 

0 .6184946 

- 0 .3470345 

- 0 .0170266 

0 .0024516 

0 .4904857 

- 0 .2327102 

- 0 .0313704 

5S 

- 0 . 9 4 4 1 8 6 7  

3 .0172120 

- 3 . 6 9 1 9 8 7 6  

1,1835238 

- 0 . 1 5 7 1 5 1 2  

0 .0856158 

- 0 .0006425 

0 .0190425 

1.2567475 

- 2 . 6 2 4 5 9 3 7  

1.8108616 

- 0.2851486 

- 0.0059338 
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